High-Contrast CXCR4-Targeted 18F-PET Imaging Using a Potent and Selective Antagonist
Autor: | Áron Roxin, Kuo-Shyan Lin, Francois Benard, Daniel Kwon, Zhengxing Zhang, David M. Perrin, Chengcheng Zhang, Jerome Lozada, Richel Poon, Jutta Zeisler |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Biodistribution CXCR4 antagonist medicine.diagnostic_test Chemistry Pharmaceutical Science Peptide 02 engineering and technology 021001 nanoscience & nanotechnology 030226 pharmacology & pharmacy Molecular biology Cycloaddition 3. Good health 03 medical and health sciences 0302 clinical medicine Positron emission tomography Drug Discovery Radioligand medicine Molecular Medicine Moiety 0210 nano-technology Linker |
Zdroj: | Molecular Pharmaceutics. 18:187-197 |
ISSN: | 1543-8392 1543-8384 |
DOI: | 10.1021/acs.molpharmaceut.0c00785 |
Popis: | C-X-C chemokine receptor 4 (CXCR4) is highly expressed in cancers, contributing to proliferation, metastasis, and a poor prognosis. The noninvasive imaging of CXCR4 can enable the detection and characterization of aggressive cancers with poor outcomes. Currently, no 18F-labeled CXCR4 positron emission tomography (PET) radiotracer has demonstrated imaging contrast comparable to [68Ga]Ga-Pentixafor, a CXCR4-targeting radioligand. We, therefore, aimed to develop a high-contrast CXCR4-targeting radiotracer by incorporating a hydrophilic linker and trifluoroborate radioprosthesis to LY2510924, a known CXCR4 antagonist. A carboxy-ammoniomethyl-trifluoroborate (PepBF3) moiety was conjugated to the LY2510924-derived peptide possessing a triglutamate linker via amide bond formation to obtain BL08, whereas an alkyne ammoniomethyl-trifluoroborate (AMBF3) moiety was conjugated using the copper-catalyzed [3+2] cycloaddition click reaction to obtain BL09. BL08 and BL09 were radiolabeled with [18F]fluoride ion using 18F-19F isotope exchange. Pentixafor was radiolabeled with [68Ga]GaCl3. Side-by-side PET imaging and biodistribution studies were performed on immunocompromised mice bearing Daudi Burkitt lymphoma xenografts. The biodistribution of [18F]BL08 and [18F]BL09 showed tumor uptake at 2 h postinjection (p.i.) (5.67 ± 1.25%ID/g and 5.83 ± 0.92%ID/g, respectively), which were concordant with the results of PET imaging. [18F]BL08 had low background activity, providing tumor-to-blood, -muscle, and -liver ratios of 72 ± 20, 339 ± 81, and 14 ± 3 (2 h p.i.), respectively. [18F]BL09 behaved similarly, with ratios of 64 ± 20, 239 ± 72, and 17 ± 3 (2 h p.i.), respectively. This resulted in high-contrast visualization of tumors on PET imaging for both radiotracers. [18F]BL08 exhibited lower kidney uptake (2.2 ± 0.5%ID/g) compared to [18F]BL09 (7.6 ± 1.0%ID/g) at 2 h p.i. [18F]BL08 and [18F]BL09 demonstrated higher tumor-to-blood, -muscle, and -liver ratios compared to [68Ga]Ga-Pentixafor (18.9 ± 2.7, 95.4 ± 36.7, and 5.9 ± 0.7 at 2 h p.i., respectively). In conclusion, [18F]BL08 and [18F]BL09 enable high-contrast visualization of CXCR4 expression in Daudi xenografts. Based on high tumor-to-organ ratios, [18F]BL08 may prove a valuable new tool for CXCR4-targeted PET imaging with potential for translation. The use of a PepBF3 moiety is a new approach for the orthogonal conjugation of organotrifluoroborates for 18F-labeling of peptides. |
Databáze: | OpenAIRE |
Externí odkaz: |