Cell surface receptors TREM2, CD14 and integrin αMβ2drive sinking engulfment in phosphatidylserine-mediated phagocytosis

Autor: Daan Vorselen, Roarke A. Kamber, Ramon Lorenzo D. Labitigan, Aaron P. van Loon, Eric Peterman, Melissa K. Delgado, Sijie Lin, Jeffrey P. Rasmussen, Michael C. Bassik, Julie A. Theriot
Rok vydání: 2022
Popis: SummaryMacrophages phagocytose and thereby eliminate a wide array of extracellular threats, ranging from antibody-coated bacteria to apoptotic cells. Precision modulation of phagocytosis has emerged as a therapeutic strategy across a range of diseases, but is limited by our incomplete understanding of how macrophages recognize, engulf, and respond to different phagocytic targets. Here, we undertook a systematic investigation of the morphological, biophysical and regulatory differences between two major types of phagocytosis: an immunostimulatory form of phagocytosis triggered by antibody-coated targets and an immunosuppressive form triggered by phosphatidylserine (PS)-coated targets. We confirmed classic observations that antibody-mediated phagocytosis involves the extension of thin actin-rich protrusions around the target, but find that PS-mediated phagocytosis involves an unexpected combination of filopodial probing, piecemeal phagocytosis and a distinct ‘sinking’ mechanism of uptake. Using a genome-wide screening approach, we identified genes specifically required for each form of phagocytosis, including actin regulators, cell surface receptors and intracellular signaling molecules. Three cell surface receptors - TREM2, CD14 and integrin αMβ2- were revealed as essential for PS-mediated uptake. Strikingly, each receptor exhibited a distinct pattern of localization at the plasma membrane and contributed uniquely to the organization of the PS-dependent phagocytic cup. Overall, this work reveals divergent genetic requirements for the morphologically and mechanically distinct forms of PS-mediated and antibody-mediated phagocytosis, thereby informing therapeutic strategies for substrate-specific phagocytosis modulation.
Databáze: OpenAIRE