Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds

Autor: Zhiqin Lu, Qi S. Zhang, Meng Zhu
Rok vydání: 2021
Předmět:
Zdroj: The Journal of Geometric Analysis. 31:10304-10335
ISSN: 1559-002X
1050-6926
DOI: 10.1007/s12220-021-00647-8
Popis: We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on (m, 0) forms, i.e., sections of the canonical bundle of Kahler manifolds, where m is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of (m, 0) forms, which involves only the Ricci curvature and the gradient of the scalar curvature.
Databáze: OpenAIRE