Popis: |
Dynamic consolidation of Virtual Machines (VMs) can effectively enhance the resource utilization and energy-efficiency of the Cloud Data Centers (CDC). Existing research on Cloud resource reservation and scheduling signify that Cloud Service Users (CSUs) can play a crucial role in improving the resource utilization by providing valuable information to Cloud service providers. However, utilization of CSUs' provided information in minimization of energy consumption of CDC is a novel research direction. The challenges herein are twofold. First, finding the right benign information to be received from a CSU which can complement the energy-efficiency of CDC. Second, smart application of such information to significantly reduce the energy consumption of CDC. To address those research challenges, we have proposed a novel heuristic Dynamic VM Consolidation algorithm, RTDVMC, which minimizes the energy consumption of CDC through exploiting CSU provided information. Our research exemplifies the fact that if VMs are dynamically consolidated based on the time when a VM can be removed from CDC — a useful information to be received from respective CSU, then more physical machines can be turned into sleep state, yielding lower energy consumption. We have simulated the performance of RTDVMC with real Cloud workload traces originated from more than 800 PlanetLab VMs. The empirical figures affirm the superiority of RTDVMC over existing prominent Static and Adaptive Threshold based DVMC algorithms. |