The new method of determining Koebe domains for the class of typically real functions under Montel's normalization
Autor: | Paweł Zaprawa, Leopold Koczan |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | TURKISH JOURNAL OF MATHEMATICS. 38:246-251 |
ISSN: | 1303-6149 1300-0098 |
DOI: | 10.3906/mat-1304-55 |
Popis: | We consider the class T ( r) of typically real functions with the normalization f (0) = 0 and f ( r) = r for axed r 2 (0 ; 1) . In the limiting case, when r tends to 0, the class T ( r) coincides with the class T of typically real functions normalized by f (0) = f ' (0) 1 = 0 . In 1980, Lewandowski and Miazga determined the Koebe domain for T ( r) , i.e. the set of the form ∩ f 2 T(r) f (∆) . They used the method applied earlier by Goodman. In this paper we present a new, complete method of determining this set. As a corollary, we obtain the Koebe set for T. |
Databáze: | OpenAIRE |
Externí odkaz: |