Subtidal to Supertidal Variability of Reynolds Stresses in a Midlatitude Stratified Inner Shelf

Autor: André Palóczy, Amy F. Waterhouse, Jennifer A. MacKinnon
Rok vydání: 2021
Předmět:
Zdroj: Journal of Physical Oceanography. 51:1091-1111
ISSN: 1520-0485
0022-3670
Popis: We describe the spatiotemporal variability and vertical structure of turbulent Reynolds stresses (RSs) in a stratified inner shelf with an energetic internal wave climate. The RSs are estimated from direct measurements of velocity variance derived from bottom-mounted acoustic Doppler current profilers. We link the RSs to different physical processes, namely, internal bores, midwater shear instabilities within vertical shear events related to wind-driven subtidal along-shelf currents, and nonturbulent stresses related to incoming nonlinear internal wave (NLIW) trains. The typical RS magnitudes are O(0.01) Pa for background conditions, with diurnal pulses of O(0.1–1) Pa, and O(1) Pa for the NLIW stresses. A NLIW train is observed to produce a depth-averaged vertical stress divergence sufficient to accelerate water 20 cm s−1 in 1 h, suggesting NLIWs may also be important contributors to the depth-averaged momentum budget. The subtidal stresses show significant periodic variability and are O(0.1) Pa. Conditionally averaged velocity and RS profiles for northward/southward flow provide evidence for downgradient turbulent momentum fluxes, but also indicate departures from this expected regime. Estimates of the terms in the depth-averaged momentum equation suggest that the vertical divergence of the RSs are important terms in both the cross-shelf and along-shelf directions, with geostrophy also present at leading-order in the cross-shelf momentum balance. Among other conclusions, the results highlight that internal bores and shoaling NLIWs may also be important dynamical players in other inner shelves with energetic internal waves.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje