Effect of SeO2 on the morphology of electrodeposited manganese
Autor: | J.C. Rojas-Montes, R. Pérez-Garibay, S. Bello-Teodoro, J. M. Flores-Álvarez |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
General Chemical Engineering Alloy chemistry.chemical_element Crystal growth Sulfuric acid 02 engineering and technology Manganese engineering.material 010402 general chemistry 021001 nanoscience & nanotechnology Microstructure Electrochemistry 01 natural sciences 0104 chemical sciences Anode chemistry.chemical_compound chemistry Chemical engineering Materials Chemistry engineering 0210 nano-technology Dissolution |
Zdroj: | Journal of Applied Electrochemistry. 50:1291-1299 |
ISSN: | 1572-8838 0021-891X |
Popis: | Most studies of the electrodeposition of manganese have focused on finding the best operation conditions to obtain good recovery efficiencies. However, few studies have focused on how these variables affect the final deposition product, the formation of initial nuclei, and crystal growth. This work studies the effect of SeO2 (0.14, 0.27, 0.54, and 0.81 mM) on the electrodeposition of manganese, the growth of the deposition product, and the microstructure of the crystals at different electrodeposition times. The catholyte was prepared by dissolving MnSO4·H2O (0.27 M) at a pH of 3.7 and (NH4)2SO4 (0.9 M), and the anolyte was prepared with a solution of 0.5 M sulfuric acid. A stainless steel 316 plate was used as the cathode, and a Pb–Ag alloy plate was used as the anode (both with an area of 57 cm2). The laboratory cell (500 mL) was partitioned with an anion-exchange membrane to prevent the transfer of ions between the compartments. Low electrodeposition efficiencies were found when using a SeO2 concentration of less than 0.27 mM due to a high rate of hydrogen evolution and dissolution of the deposited manganese film, forming a blackish deposit (MnO2). Above this concentration of SeO2, the deposits had a compact, well-defined crystalline structure and larger grain size. The availability of selenium during the initial stage of electrocrystallization allows for the formation of the first nuclei of manganese, promoting their growth. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |