The SCALE/AMPX multigroup cross section processing for fast reactor analysis
Autor: | Mark L Williams, Dorothea Wiarda, Byoung Kyu Jeon, Kang Seog Kim, Andrew Holcomb, Won Sik Yang |
---|---|
Rok vydání: | 2019 |
Předmět: |
High energy
Materials science 020209 energy Nuclear engineering Neutron spectra 02 engineering and technology 01 natural sciences 010305 fluids & plasmas Reaction rate Group structure Nuclear Energy and Engineering Thermal radiation Boiling 0103 physical sciences 0202 electrical engineering electronic engineering information engineering |
Zdroj: | Annals of Nuclear Energy. 132:161-171 |
ISSN: | 0306-4549 |
Popis: | The SCALE/AMPX multigroup (MG) cross section processing procedure has been updated to minimize reactivity differences for fast reactor designs and boiling water reactors (BWRs) with very high void fractions to provide excellent agreement with continuous-energy reference calculations. SCALE MG calculations are widely applied to thermal spectrum light-water reactor (LWR) systems as well as fast spectrum metallic systems of interest to National Nuclear Security Administration. With growing interest from industry and regulators in applying SCALE for the design of fast spectrum reactors, both sodium and molten salt, and in the licensing of power up rates for BWRs, it is desirable to review the SCALE/AMPX procedure for unresolved resonance self-shielded data and high energy neutron spectra. The data were improved by generating MG unresolved resonance data based on the analytic probability table method with the narrow resonance approximation as well as the use of a very fine group structure typically used in fast system analysis. This study focused on verifying the probability table and the SCALE/AMPX MG cross section processing procedure by performing reaction rate analysis and benchmark calculations for various fast reactor and high void BWR systems. Results indicate that the improved SCALE/AMPX MG cross section processing provides excellent results for the fast reactor analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |