Positive Center Sets of Convex Curves
Autor: | Yunlong Yang, Pingliang Huang, Shengliang Pan |
---|---|
Rok vydání: | 2015 |
Předmět: |
Combinatorics
Computational Theory and Mathematics Astrophysics::High Energy Astrophysical Phenomena Convex curve A domain Regular polygon Center (category theory) Discrete Mathematics and Combinatorics Geometry and Topology Mathematics::Representation Theory Convex function Theoretical Computer Science Mathematics |
Zdroj: | Discrete & Computational Geometry. 54:728-740 |
ISSN: | 1432-0444 0179-5376 |
DOI: | 10.1007/s00454-015-9715-9 |
Popis: | In this paper we shall investigate the positive center set $${\mathfrak {P}}(\gamma )$$P(?) of a convex curve $$\gamma $$? and show that $${\mathfrak {P}}(\gamma )$$P(?) has only one point if and only if $$\gamma $$? is a circle; $${\mathfrak {P}}(\gamma )$$P(?) is a segment if and only if $$\gamma $$? is a sausage curve; if $$\gamma $$? is a strictly convex non-circular curve, then $${\mathfrak {P}}(\gamma )$$P(?) is a domain of positive area; and furthermore, if $$\gamma $$? is a constant width curve, then $${\mathfrak {P}}(\gamma )$$P(?) is its inner parallel body $$K_{-r_1}$$K-r1. |
Databáze: | OpenAIRE |
Externí odkaz: |