Automatic Classification of Source Code Archives by Programming Language: A Deep Learning Approach

Autor: Julio Reyes, Diego Ramirez, Julio Paciello
Rok vydání: 2016
Předmět:
Zdroj: 2016 International Conference on Computational Science and Computational Intelligence (CSCI).
DOI: 10.1109/csci.2016.0103
Popis: This paper proposes the use of a Deep Learning technique, the Long Short-Term Memory (LSTM) recurrent neural network, for the automatic classification of source code archives by programming language. Experiments show that this simple recurrent neural network architecture gives promising results in accuracy compared to the Naive Bayes classifier, currently used by Linguist, one of the most popular programming language classifiers.
Databáze: OpenAIRE