Pointwise inequalities of logarithmic type in Hardy-Hölder spaces
Autor: | Imed Feki, Slim Chaabane |
---|---|
Rok vydání: | 2014 |
Předmět: |
Cauchy problem
Pointwise Mathematics::Functional Analysis General Mathematics Mathematical analysis Mathematics::Classical Analysis and ODEs Mathematics::Spectral Theory Hardy space Inverse problem Space (mathematics) Unit disk Domain (mathematical analysis) symbols.namesake symbols Laplace operator Mathematics |
Zdroj: | Czechoslovak Mathematical Journal. 64:351-363 |
ISSN: | 1572-9141 0011-4642 |
DOI: | 10.1007/s10587-014-0106-9 |
Popis: | We prove some optimal logarithmic estimates in the Hardy space H∞(G) with Holder regularity, where G is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space Hk,∞ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Holder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem. |
Databáze: | OpenAIRE |
Externí odkaz: |