Pointwise inequalities of logarithmic type in Hardy-Hölder spaces

Autor: Imed Feki, Slim Chaabane
Rok vydání: 2014
Předmět:
Zdroj: Czechoslovak Mathematical Journal. 64:351-363
ISSN: 1572-9141
0011-4642
DOI: 10.1007/s10587-014-0106-9
Popis: We prove some optimal logarithmic estimates in the Hardy space H∞(G) with Holder regularity, where G is the open unit disk or an annular domain of ℂ. These estimates extend the results established by S.Chaabane and I.Feki in the Hardy-Sobolev space Hk,∞ of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Holder functions. As an application of these estimates, we study the stability of both the Cauchy problem for the Laplace operator and the Robin inverse problem.
Databáze: OpenAIRE