Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification
Autor: | Yan-fang Zhang, Ji-Hua Ma |
---|---|
Rok vydání: | 2020 |
Předmět: |
Applied Mathematics
010102 general mathematics Hausdorff space Mathematics::General Topology General Physics and Astronomy Statistical and Nonlinear Physics Lipschitz continuity Topology 01 natural sciences Sierpinski triangle 010101 applied mathematics Fractal Hausdorff dimension Mathematics::Metric Geometry 0101 mathematics Equivalence (formal languages) Mathematical Physics Mathematics |
Zdroj: | Nonlinearity. 33:6053-6071 |
ISSN: | 1361-6544 0951-7715 |
DOI: | 10.1088/1361-6544/aba0c4 |
Popis: | We calculate topological Hausdorff dimensions of a class of fractal squares by constructing certain self-similar curves. Examples include some generalized Sierpinski carpets, which have the same Hausdorff dimensions but different topological Hausdorff dimensions. Applications are given to the study of Lipschitz equivalence of fractal squares. |
Databáze: | OpenAIRE |
Externí odkaz: |