Popis: |
This paper focuses on the problem of asynchronous non-fragile dissipativity control for a class of switched singularly perturbed systems (SPSs) governed by the persistent dwell-time (PDT) switching mechanism in the discrete-time context. Unlike some previous results, the modes of system and controller in this paper are assumed to be asynchronized, which conforms better with the practical scenarios. Besides, considering the case that the controllers may be affected by uncertain factors and can not be realized accurately during system operation, the non-fragile mechanism is introduced in the process of controller design to enhance the reliability and security of the SPSs. Based on Lyapunov stability theory and stochastic analysis theory, some sufficient conditions are obtained, which can ensure the exponentially mean-square stable (EMSS) and strict dissipative performance of the closed-loop system. Furthermore, the asynchronous non-fragile slow state variables feedback (SSVF) controller gains are obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example and an inverted pendulum model are applied to demonstrate the superiority and the practicability of the developed control mechanism. |