New algorithm for the elliptic curve discrete logarithm problem with auxiliary inputs
Autor: | Jiang Weng, Yunqi Dou, Chuangui Ma |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Algebra and Number Theory Group (mathematics) Applied Mathematics Multiplicative function Order (ring theory) Euler's totient function Cyclic group 0102 computer and information sciences 02 engineering and technology 01 natural sciences Baby-step giant-step Prime (order theory) Combinatorics symbols.namesake 010201 computation theory & mathematics Discrete logarithm 020204 information systems 0202 electrical engineering electronic engineering information engineering symbols Algorithm Mathematics |
Zdroj: | Applicable Algebra in Engineering, Communication and Computing. 28:99-108 |
ISSN: | 1432-0622 0938-1279 |
DOI: | 10.1007/s00200-016-0301-z |
Popis: | The discrete logarithm problem with auxiliary inputs (DLP-wAI) is a special discrete logarithm problem. Cheon first proposed a novel algorithm to solve the discrete logarithm problem with auxiliary inputs. Given a cyclic group $${\mathbb {G}}=\langle P\rangle $$G=?P? of order p and some elements $$P,\alpha P,\alpha ^2 P,\ldots , \alpha ^d P\in {\mathbb {G}}$$P,?P,?2P,?,?dP?G, an attacker can recover $$\alpha \in {\mathbb {Z}}_p^*$$??Zp? in the case of $$d|(p\pm 1)$$d|(p±1) with running time of $${\mathcal {O}}(\sqrt{(p\pm 1)/d}+d^i)$$O((p±1)/d+di) group operations by using $${\mathcal {O}}(\text {max}\{\sqrt{(p\pm 1)/d}, \sqrt{d}\})$$O(max{(p±1)/d,d}) storage ($$i=\frac{1}{2}$$i=12 or 1 for $$d|(p-1)$$d|(p-1) case or $$d|(p+1)$$d|(p+1) case, respectively). In this paper, we propose a new algorithm to solve another form of elliptic curve discrete logarithm problem with auxiliary inputs (ECDLP-wAI). We show that if some points $$P,\alpha P,\alpha ^k P,\alpha ^{k^2} P,\alpha ^{k^3} P,\ldots ,\alpha ^{k^{\varphi (d)-1}}P\in {\mathbb {G}}$$P,?P,?kP,?k2P,?k3P,?,?k?(d)-1P?G and multiplicative cyclic group $$K=\langle k \rangle $$K=?k? are given, where d is a prime, $$\varphi (d)$$?(d) is the order of K and $$\varphi $$? is the Euler totient function, the secret key $$\alpha \in {\mathbb {Z}}_p^*$$??Zp? can be solved in $${\mathcal {O}}(\sqrt{(p-1)/d}+d)$$O((p-1)/d+d) group operations by using $${\mathcal {O}}(\sqrt{(p-1)/d})$$O((p-1)/d) storage. |
Databáze: | OpenAIRE |
Externí odkaz: |