Preliminary evaluation of rechargeable lithium cells for a totally-implantable ventricular assist device

Autor: Gregory K. MacLean, Isaac I. Eng, Peter A. Aiken, William A. Adams, Zhi Xin Shu
Rok vydání: 1993
Předmět:
Zdroj: Journal of Power Sources. 41:87-98
ISSN: 0378-7753
DOI: 10.1016/0378-7753(93)85007-b
Popis: A preliminary evaluation of the performance characteristics for three types of rechargeable, ‘AA’ size, lithium cell chemistries, namely Li/TiS2 (two different manufacturers), Li/MoS2 and Li/MnO2, was carried out in order to determine their potential usefulness in the internal (implanted) battery for the electrohydraulic ventricular assist device (EVAD) being developed. The major parameters studied at 37 °C were discharge rate capability, self-discharge and cycle life. The cycle life of the lithium cells above the minimum 30 min discharge time specified for EVAD were short, with the Li/MoS2, Li/MnO2 and two Li/TiS2 cells giving 80, ∼ 11, 37 and 101 cycles, respectively, under pulsed discharge conditions. The 24 H, self-discharge study of all the cells at 37 °C showed < 1.2% decrease in capacity. Discharge rate studies showed that the Li/TiS2 cells from both manufacturers offered higher observed specific energies (85 and 133 W h/kg) and energy densities (203 and 273 W h/l), lower internal resistances (155 and 84 mΩ) and larger observed capacities (0.83 and 1.00 A h) when compared to the Li/MoS2 (49 W h/kg, 126 W h/l, 153 mΩ and 0.58 A h, respectively) and Li/MnO2 (56 W h/kg, 131 W h/l, 350 mΩ and 0.39 A h, respectively) cells operating under average EVAD load conditions. The cycle life and operating times of cells that were pulse discharged to mimic actual EVAD operating conditions were shorter than those that underwent cycling with an average EVAD load. When compared to other energy sources and the EVAD design specification, it was concluded that none of these prototype lithium cells were currently suitable for use in the EVAD due to their low cycle life.
Databáze: OpenAIRE