Popis: |
Purpose Multitilting-pad journal bearings (MTPJBs) used in large-scale hydraulic turbines often suffer from complex operating conditions, which greatly influence the overall performance of the rotating machine. The purpose of this study is to establish a thermal-elastic-hydrodynamic lubrication model for MTPJBs that can predict the static and dynamic characteristics of high-speed and heavy-load MTPJBs under different operating conditions. Design/methodology/approach A thermo-elasto-hydrodynamic lubrication model considering the turbulence effect is proposed for high-speed and heavy-load TPJBs, which is solved using the coupled finite difference method and finite element method. The model considered the turbulence effect, thermal energy diffusion, viscosity–temperature–pressure relationship and elastic deformation of the pads. The influences of the operating conditions on static and dynamic characteristics of tilting pad journal bearings were analyzed in depth. Findings The operating conditions have a strong effect on the static properties of the bearings. The dynamic characteristics of the TPJB were the most influenced by the shaft speed. The effects of the load direction on the dynamic properties of the TPJB were much stronger than those of the static characteristics. Originality/value This study used analytical methods and models to provide theoretical guidance for evaluating lubricating characteristics, assembling conditions and overall health. |