Derived representation theory of Lie algebras and stable homotopy categorification of sl
Autor: | Igor Kriz, Petr Somberg, Po Hu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Functor Verma module General Mathematics Categorification Homotopy 010102 general mathematics Mathematics::Algebraic Topology 01 natural sciences Representation theory Stable homotopy theory Mathematics::Category Theory 0103 physical sciences Lie algebra 010307 mathematical physics 0101 mathematics Invariant (mathematics) Mathematics::Representation Theory Mathematics |
Zdroj: | Advances in Mathematics. 341:367-439 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2018.10.044 |
Popis: | We set up foundations of representation theory over S, the sphere spectrum, which is the “initial ring” of stable homotopy theory. In particular, we treat S-Lie algebras and their representations, characters, g l n ( S ) -Verma modules and their duals, Harish-Chandra pairs and Zuckermann functors. As an application, we construct a Khovanov s l k -stable homotopy type with a large prime hypothesis, which is a new link invariant, using a stable homotopy analogue of the method of J. Sussan. |
Databáze: | OpenAIRE |
Externí odkaz: |