Integrating Users’ Contextual Engagements with Their General Preferences: An Interpretable Followee Recommendation Method
Autor: | Yaxuan Ran, Jiani Liu, Yishi Zhang |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | INFORMS Journal on Computing. |
ISSN: | 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.2023.1284 |
Popis: | Users’ contextual engagements can affect their decisions about who to follow on online social networks because engaged (versus disengaged) users tend to seek more information about the interested topic and are more likely to follow relevant accounts successively. However, existing followee recommendation methods neglect to consider contextual engagement by only relying on users’ general preferences. In the light of the chronological characteristic of the user’s following behavior, we draw on the engagement theory and propose an interpretable algorithm, namely preference-engagement latent Dirichlet allocation (PE-LDA), which integrates users’ contextual engagements with their general preferences for followee recommendation. Specifically, we suggest that if engaged in the current interest, a user will be more likely to select a followee relevant to that interest. If not, the user tends to select a followee according to their general preference. To implement this framework, we extend the original LDA by (1) introducing an indicator to represent whether the user is engaged in the current interest or not and (2) allowing a potential dependency between a user’s successive interests to describe the condition of contextual engagement. We conduct extensive experiments using a real-world Twitter data set. Results demonstrate the superior performance of PE-LDA compared with several existing methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 71702066, 71802192, 71832010, 72172112, and 72272152]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1284 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0172 ) at ( http://dx.doi.org/10.5281/zenodo.7460938 ). |
Databáze: | OpenAIRE |
Externí odkaz: |