Asymptotic normality for a local composite quantile regression estimator of regression function with truncated data

Autor: Hui-Zeng Zhang, Weimin Ma, Li-Min Wen, Jiang-Feng Wang
Rok vydání: 2013
Předmět:
Zdroj: Statistics & Probability Letters. 83:1571-1579
ISSN: 0167-7152
DOI: 10.1016/j.spl.2013.02.022
Popis: In this paper, we construct a local linear composite quantile regression (CQR) estimator of regression function for left-truncated data, which extends the CQR method to the left-truncated model. The asymptotic normality of the proposed estimator is also established. The estimator is much more efficient than the local linear regression estimator for commonly-used non-normal error distributions via simulations.
Databáze: OpenAIRE