Autor: |
F. Heimes, B. van Heuveln |
Rok vydání: |
2002 |
Předmět: |
|
Zdroj: |
SMC |
DOI: |
10.1109/icsmc.1998.728118 |
Popis: |
Presents a neural network called the normalized radial basis function (NRBF) neural network. The NRBF integrates techniques from two similar neural networks: the general regression neural network (GRNN) and the radial basis function (RBF) neural network. The NRBF is identical to the standard radial basis function (RBF) network except the hidden layer outputs are normalized before being passed through the output layer. The normalization of the hidden layer weights is shown to improve the extrapolation performance of the conventional RBF network. We have reason to believe that under normal circumstances the NRBF outperforms the RBF and the GRNN. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|