On the Riemann-Hilbert Problem for a q-Difference Painlevé Equation
Autor: | Pieter Roffelsen, Nalini Joshi |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Pure mathematics Computer Science::Information Retrieval 010102 general mathematics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Statistical and Nonlinear Physics Surface (topology) 01 natural sciences Physics::Geophysics Moduli space symbols.namesake 0103 physical sciences Bijection symbols Riemann–Hilbert problem 010307 mathematical physics Transcendental number 0101 mathematics Mathematical Physics |
Zdroj: | Communications in Mathematical Physics. 384:549-585 |
ISSN: | 1432-0916 0010-3616 |
Popis: | A Riemann-Hilbert problem for a q-difference Painleve equation, known as $$q{\text {P}}_{{\text {IV}}}$$ , is shown to be solvable. This yields a bijective correspondence between the transcendental solutions of $$q{\text {P}}_{{\text {IV}}}$$ and corresponding data on an associated q-monodromy surface. We also construct the moduli space of $$q{\text {P}}_{{\text {IV}}}$$ explicitly. |
Databáze: | OpenAIRE |
Externí odkaz: |