A quasiclassical analysis of second-harmonic generation
Autor: | A. Gómez Nicola, L L Sanchez-Soto, A Luis, Ramón F. Alvarez-Estrada |
---|---|
Rok vydání: | 1995 |
Předmět: |
Tridiagonal matrix
Numerical analysis General Physics and Astronomy Second-harmonic generation Statistical and Nonlinear Physics Quantum number symbols.namesake Quantum mechanics symbols Wave function Hamiltonian (quantum mechanics) Quantum Mathematical Physics Eigenvalues and eigenvectors Mathematics |
Zdroj: | Journal of Physics A: Mathematical and General. 28:3439-3451 |
ISSN: | 1361-6447 0305-4470 |
Popis: | We investigate a quantum two-oscillator model for second-harmonic generation. The total Hamiltonian is the sum of two commuting Hamiltonians with eigenvalues E0 and Eint. The exact determination of these eigenvalues is studied using tridiagonal matrices. We present two general equations in the quasiclassical regime yielding the largest Eint for a given E0 and a representation for both eigenvalues in terms of an additional quantum number. Some numerical analysis shows that both equations are fairly consistent for suitably large quantum numbers with the exact quantum results. An approximate analytical expression for the wavefunction is also given. |
Databáze: | OpenAIRE |
Externí odkaz: |