Symbiotic N2 fixation in 30 field-grown cowpea (Vigna unguiculata L. Walp.) genotypes in the Upper West Region of Ghana measured using 15N natural abundance
Autor: | Felix D. Dakora, Alphonsus K. Belane |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Biology and Fertility of Soils. 46:191-198 |
ISSN: | 1432-0789 0178-2762 |
DOI: | 10.1007/s00374-009-0415-6 |
Popis: | In this study, 30 cowpea genotypes were assessed for symbiotic N2 fixation in 2005, and 15 of them were re-evaluated in 2006 using the 15N natural abundance technique. Shoot dry matter yield of cowpea genotypes increased significantly in cvs. Vuli-1, Glenda, IT93K-2045-29, IT90K-59, Omondaw, Apagbaala, and IT84S-2246 in 2005 producing about 3.0 to 3.6-fold more biomass relative to cv. Vallenga. In 2006, seven out of the 15 cowpea genotypes tested (namely, IT97K-499-39, TVu11424, Botswana White, IT84S-2246, Sanzie, Brown Eye, and Glenda) also produced more dry matter than cv. CH14. Shoot δ15N values ranged from −0.58‰ to 1.49‰ in 2005, and −1.51‰ to 1.40‰ in 2006, and these resulted in %Ndfa values of 63.5–86.7% and 56.2–96.3%, respectively. The amount of N-fixed was 49–178 kg N ha−1 in 2005 and 62–198 kg N ha−1 in 2006. Furthermore, there was a direct relationship between the level of symbiotic N nutrition and plant growth, and between grain yield and amount of N-fixed in 2005 and 2006. As a result, genotypes that fixed the most N also produced the largest biomass and the greatest amount of grain yield. The observed relationship between N2 fixation and biomass confirmed our view that cowpea (and other grain legumes) can be concurrently selected for higher N2 fixation, superior plant growth, and greater grain yield. The high levels of N-fixed by many of the cowpea genotypes in this study suggest that they can contribute large amounts of N to cropping systems in African agriculture. |
Databáze: | OpenAIRE |
Externí odkaz: |