Autor: |
Kevin C. Gross, Glen P. Perram, J. M. Gordon |
Rok vydání: |
2011 |
Předmět: |
|
Zdroj: |
SPIE Proceedings. |
ISSN: |
0277-786X |
DOI: |
10.1117/12.883515 |
Popis: |
A physics-based empirical model is developed to characterize the time varying temperature profile from post-detonation combustion. Fourier-transform infrared signatures are collected from field detonations of RDX-based aluminized high explosives surrounded by an aluminized plastic-bonded spin-cast liner. The rate of change of temperature in the postdetonation combustion fireballs are modeled using a radiative cooling term and a double exponential combustion source term. Optimized nonlinear least-squares fit of the numerical solution of the empirical model to the temperature data yields peak temperatures of 1290-1850. The observed heat released in the secondary combustion is well correlated with the high explosive and liner heat of combustion with an average efficiency of 54%. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|