A New Version Darboux Vector and Characterization Some Special Curves According to Type-2 Bishop Frame in $$\mathbb {R}^{3}$$ R 3

Autor: Süha Yilmaz, Umit Ziya Savcı
Rok vydání: 2017
Předmět:
Zdroj: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 87:355-362
ISSN: 2250-1762
0369-8203
DOI: 10.1007/s40010-017-0373-6
Popis: In this paper, we introduce a new Darboux vector and Darboux helix a curve according to type-2 Bishop frame in $$ \mathbb {R}^{3}$$ . We defined a new Darboux vector in term of type-2 Bishop frame in $$ \mathbb {R}^{3}$$ . We introduce a new spherical indicatrix, Darboux helix and constant precession of the curve type-2 Bishop in Euclidean 3-space. We give new characterization between Darboux helix and general helix. Apart from, the following characterization is given. The curve $$\alpha \in $$ $$ \mathbb {R} ^{3}$$ is an inclined curve if and only if the arc length $$s_{\omega _{0}}$$ of the Darboux spherical indicatrix of the $$\alpha $$ is constant. Finally we illustrate one example of our main results.
Databáze: OpenAIRE