On lattice-almost isometric copies of $$c_0(\Gamma )$$ and $$\ell _1(\Gamma )$$ in Banach lattices

Autor: Andrés Fabián Leal-Archila, Michael A. Rincón-Villamizar
Rok vydání: 2021
Předmět:
Zdroj: Rendiconti del Circolo Matematico di Palermo Series 2. 71:515-523
ISSN: 1973-4409
0009-725X
DOI: 10.1007/s12215-021-00620-y
Popis: The main aim of this paper is proving the corresponding lattice version of James distortion theorem for $$c_0(\Gamma )$$ and $$\ell _1(\Gamma )$$ : if a Banach lattice contains lattice copy of $$c_0(\Gamma )$$ ( $$\ell _1(\Gamma )$$ respectively), then it contains lattice-almost isometric copies of $$c_0(\Gamma )$$ ( $$\ell _1(\Gamma )$$ respectively). We also show that the classical Lozanovskii and Meyer-Nieberg Theorem for $$c_0$$ is not longer valid for $$c_0(\Gamma )$$ whenever $$\Gamma $$ is uncountable.
Databáze: OpenAIRE