On lattice-almost isometric copies of $$c_0(\Gamma )$$ and $$\ell _1(\Gamma )$$ in Banach lattices
Autor: | Andrés Fabián Leal-Archila, Michael A. Rincón-Villamizar |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Rendiconti del Circolo Matematico di Palermo Series 2. 71:515-523 |
ISSN: | 1973-4409 0009-725X |
DOI: | 10.1007/s12215-021-00620-y |
Popis: | The main aim of this paper is proving the corresponding lattice version of James distortion theorem for $$c_0(\Gamma )$$ and $$\ell _1(\Gamma )$$ : if a Banach lattice contains lattice copy of $$c_0(\Gamma )$$ ( $$\ell _1(\Gamma )$$ respectively), then it contains lattice-almost isometric copies of $$c_0(\Gamma )$$ ( $$\ell _1(\Gamma )$$ respectively). We also show that the classical Lozanovskii and Meyer-Nieberg Theorem for $$c_0$$ is not longer valid for $$c_0(\Gamma )$$ whenever $$\Gamma $$ is uncountable. |
Databáze: | OpenAIRE |
Externí odkaz: |