An integrable semi-discrete Degasperis–Procesi equation

Autor: Bao-Feng Feng, Ken-ichi Maruno, Yasuhiro Ohta
Rok vydání: 2017
Předmět:
Zdroj: Nonlinearity. 30:2246-2267
ISSN: 1361-6544
0951-7715
DOI: 10.1088/1361-6544/aa67fc
Popis: Based on our previous work on the Degasperis–Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis–Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis–Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis–Procesi equation, and its N-soliton solution converge to ones of the original Degasperis–Procesi equation in the continuum limit.
Databáze: OpenAIRE