An integrable semi-discrete Degasperis–Procesi equation
Autor: | Bao-Feng Feng, Ken-ichi Maruno, Yasuhiro Ohta |
---|---|
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
Integrable system Continuum (topology) Applied Mathematics 010102 general mathematics Mathematics::Analysis of PDEs General Physics and Astronomy Bilinear interpolation Statistical and Nonlinear Physics 01 natural sciences Nonlinear Sciences::Exactly Solvable and Integrable Systems 0103 physical sciences 010307 mathematical physics Limit (mathematics) 0101 mathematics Degasperis–Procesi equation Mathematics::Representation Theory Nonlinear Sciences::Pattern Formation and Solitons Mathematical Physics Mathematical physics Mathematics |
Zdroj: | Nonlinearity. 30:2246-2267 |
ISSN: | 1361-6544 0951-7715 |
DOI: | 10.1088/1361-6544/aa67fc |
Popis: | Based on our previous work on the Degasperis–Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis–Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis–Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis–Procesi equation, and its N-soliton solution converge to ones of the original Degasperis–Procesi equation in the continuum limit. |
Databáze: | OpenAIRE |
Externí odkaz: |