Popis: |
A technique based on matching the refractive index of an invading liquid to that of a fiber mat has been used to study entrapment of air (“voids”) that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids, with surface tensions varying from 28 × 10−3 to 36 × 10−3 N/m, viscosities from 45 × 10−3 to 80 × 10−3 Pa · s, and inlet flow rates from 0.15 × 10−6 to 0.75 × 10−6 m3/s, have shown that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number Ca = 2.5 × 10−3 identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. |