Makine Öğrenmesi Yöntemleri İle Günümüz Ve Geleceğe Yönelik Meslek Tahminlerinin Değerlendirilmesi : Türkiye'den Ampirik Deliller

Autor: Ebru Karaahmetoğlu, Ahmet Kürşad Türker, Süleyman Ersöz, Volkan Ateş, Ali Firat Inal
Rok vydání: 2023
Předmět:
Zdroj: Politeknik Dergisi. 26:107-124
ISSN: 2147-9429
DOI: 10.2339/politeknik.985534
Popis: For the purpose of evaluating present and future trends of professions within the labor market, text mining approach could be an alternative to more traditional approaches such as employer surveys. Specifically, machine learning algorithms are used for making accurate predictions about the future directions of the professions which consequently will influence professional development of labour force. The aim of this study is to investigate the professions of the future and current in Turkey by the application of supervised learning algorithms and clustering methods to various Turkish data including documents belonging to Turkey's institutions. In this study, the popular professions were predicted with an accuracy rate between ≅0.81 and ≅0.93 thorough various machine learning algorithms. It was discovered that methodologically perceptron and stochastic gradient descent algorithms demonstrated superiority over other algorithms thanks to their intelligence functions. Furthermore, the analysis of current professions in Turkey revealed that the class of "Professional occupations", "Managers" and "Technicians and assistant professional members" were popular, and according to the analysis of the future, information technology-based occupations will be important. Although limited Turkish data sources for the analysis of future, results with an accuracy of nearly 1 were produced.
Databáze: OpenAIRE