The Length of a Direct Sum of Nonassociative Algebras
Autor: | Alexander Guterman, D. K. Kudryavtsev, O. V. Markova |
---|---|
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Direct sum Applied Mathematics General Mathematics Mathematics::Rings and Algebras 010102 general mathematics 01 natural sciences Upper and lower bounds 010305 fluids & plasmas Combinatorics Mathematics::Group Theory Mathematics::Category Theory 0103 physical sciences 0101 mathematics Associative property Mathematics |
Zdroj: | Journal of Mathematical Sciences. 249:158-166 |
ISSN: | 1573-8795 1072-3374 |
Popis: | A lower and an upper bounds for the length of a direct sum of nonassociative algebras are obtained, and their sharpness is established. Note that while the lower bound for the length of a direct sum in the associative and nonassociative cases turns out to be the same, the upper bound in the nonassociative case significantly exceeds its associative counterpart. |
Databáze: | OpenAIRE |
Externí odkaz: |