A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis

Autor: Markéta Zukalová, Klebson Lucenildo Da Silva, Olena Porodko, Monika Vinarčíková, Maksym Lisnichuk, Vladimir Šepelák, Vladimír Girman, Hristo Kolev, Martin Fabián
Rok vydání: 2021
Předmět:
Zdroj: Zeitschrift für Physikalische Chemie. 236:713-726
ISSN: 2196-7156
0942-9352
Popis: For the first time, a spinel-type high entropy oxide (Zn0.25Cu0.25Mg0.25Co0.25)Al2O4 as well as its derivative lithiated high entropy oxyfluoride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5F0.5 and oxychloride Li0.5(Zn0.25Cu0.25Mg0.25Co0.25)0.5Al2O3.5Cl0.5 are prepared in the nanostructured state via high-energy co-milling of the simple oxide precursors and the halides (LiF or LiCl) as sources of lithium, fluorine and chlorine. Their nanostructure is investigated by XRD, HR-TEM, EDX and XPS spectroscopy. It is revealed that incorporation of lithium into the structure of spinel oxide together with the anionic substitution has significant effect on its short-range order, size and morphology of crystallites as well as on its oxidation/reduction processes. The charge capacity of the as-prepared nanomaterials tested by cyclic voltammetry is found to be rather poor despite lithiation of the samples in comparison to previously reported spinel-type high entropy oxides. Nevertheless, the present work offers the alternative one-step mechanochemical route to novel classes of high entropy oxides as well as to lithiated oxyfluorides and oxychlorides with the possibility to vary their cationic and anionic elemental composition.
Databáze: OpenAIRE