Remarkable damage in talc caused by electron beam irradiation with a dose of up to 1000 kGy: lattice shrinkage in the Z- and Y-axis and corresponding intrinsic microstructural transformation process speculation
Autor: | Zishuang Wang, Lin Liu, Jiayan Li, Xiaojun Huang, Xiaoya Su, Xiaoguang Wang, Ke Fang, Chenguang Yang, Honglong Wang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
General Chemical Engineering Cleavage (crystal) 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology Talc 01 natural sciences 0104 chemical sciences Crystal Crystallography Lattice (module) Octahedron Lattice plane medicine Irradiation 0210 nano-technology medicine.drug Shrinkage |
Zdroj: | RSC Advances. 11:21870-21884 |
ISSN: | 2046-2069 |
DOI: | 10.1039/d1ra04012j |
Popis: | To reduce the polluted areas caused by the migration of radioactive or toxic matter, a clear understanding of soil matrix stability, especially the lattice, is essential under irradiation conditions like those of β-ray irradiation. In reality, the matrix of soil or clay is silicate, with talc being one of the most simple species with a similar structure to that matter, exhibiting “2 : 1” stacking and a complete crystal. Therefore, in this work, it was irradiated by an electron beam in air with dose up to 1000 kGy. Then, variations in lattice and the intrinsic microstructural transformation process, especially in terms of defect formation and transformation, were explored. The main results show that irradiation led to talc lattice plane shrinkage and amorphization. Shrinkage and amorphization levels in the Z-axis were more serious than those in the Y-axis. For a 1000 kGy-irradiated sample, the shrinkage level of the (002) lattice plane was close to 2% near 0.2 A and that of (020) was close to 1.3% near 0.06 A. Variation in the (002) lattice plane was more obvious than that of (020). The main mechanisms involve the cleavage of tetrahedral Si–O and linkage of tetrahedra and octahedra. Tetrahedral Si–O cleavage was visible, leading to serious amorphization. Nevertheless, lattice plane shrinkage, especially in the Z-axis, was mainly caused by linkage cleavage in this direction. In addition to linkage cleavage, dehydroxylation and H2O volatilization occurred, coupled with H2O radiolysis. Nevertheless, those factors are secondary to lattice variation. |
Databáze: | OpenAIRE |
Externí odkaz: |