Bogolyubov generating functional method in statistical mechanics and the analog of the transformation to collective variables
Autor: | N.N. Bogolyubov, A.K. Prikarpatskii |
---|---|
Rok vydání: | 1986 |
Předmět: |
Basis (linear algebra)
Differential equation Nuclear Theory Mathematical analysis Non-equilibrium thermodynamics Statistical and Nonlinear Physics Statistical mechanics Transformation (function) Functional equation Path integral formulation Physics::Atomic Physics Statistical physics Mathematical Physics Heisenberg picture Mathematics |
Zdroj: | Theoretical and Mathematical Physics. 66:305-317 |
ISSN: | 1573-9333 0040-5779 |
DOI: | 10.1007/bf01018230 |
Popis: | Bogolyubov's functional equations for the distribution functions in statistical mechanics for equilibrium and nonequilibrium many-particle systems are studied. An analog of the transformation to ''collective'' variables on the basis of an exact solution of Bogolyubov's functional equation in the equilibrium case is proposed. Bogolyubov's method is used to obtain a functional equation of Kirkwood-Salsburg-Symanzik type. A path integral method is developed for constructing the generating functionals of the distribution functions. |
Databáze: | OpenAIRE |
Externí odkaz: |