On the asymptotic behavior of solutions for the self-dual Maxwell-Chern-Simons $ O(3) $ Sigma model
Autor: | Zhi-You Chen, Chung-Yang Wang, Yu-Jen Huang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Discrete and Continuous Dynamical Systems. 42:4887 |
ISSN: | 1553-5231 1078-0947 |
DOI: | 10.3934/dcds.2022077 |
Popis: | In this paper, we consider the nonlinear equations arising from the self-dual Maxwell-Chern-Simons gauged \begin{document}$ O(3) $\end{document} sigma model on (2+1)-dimensional Minkowski space \begin{document}$ {\bf R^{2,1}} $\end{document} with the metric \begin{document}$ {\mathrm {diag}}(1,-1,-1) $\end{document}. We establish the asymptotic behavior of multivortex solutions corresponding to their flux and find the range of the flux for non-topological solutions. Moreover, we prove the radial symmetry property under certain conditions in one vortex point case. |
Databáze: | OpenAIRE |
Externí odkaz: |