On the asymptotic behavior of solutions for the self-dual Maxwell-Chern-Simons $ O(3) $ Sigma model

Autor: Zhi-You Chen, Chung-Yang Wang, Yu-Jen Huang
Rok vydání: 2022
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems. 42:4887
ISSN: 1553-5231
1078-0947
DOI: 10.3934/dcds.2022077
Popis: In this paper, we consider the nonlinear equations arising from the self-dual Maxwell-Chern-Simons gauged \begin{document}$ O(3) $\end{document} sigma model on (2+1)-dimensional Minkowski space \begin{document}$ {\bf R^{2,1}} $\end{document} with the metric \begin{document}$ {\mathrm {diag}}(1,-1,-1) $\end{document}. We establish the asymptotic behavior of multivortex solutions corresponding to their flux and find the range of the flux for non-topological solutions. Moreover, we prove the radial symmetry property under certain conditions in one vortex point case.
Databáze: OpenAIRE