CamouFinder: Finding Camouflaged Instances in Images

Autor: Trung-Nghia Le, Vuong Nguyen, Cong Le, Tan-Cong Nguyen, Minh-Triet Tran, Tam V. Nguyen
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the AAAI Conference on Artificial Intelligence. 35:16071-16074
ISSN: 2374-3468
2159-5399
DOI: 10.1609/aaai.v35i18.18015
Popis: In this paper, we investigate the interesting yet challenging problem of camouflaged instance segmentation. To this end, we first annotate the available CAMO dataset at the instance level. We also embed the data augmentation in order to increase the number of training samples. Then, we train different state-of-the-art instance segmentation on the CAMO-instance data. Last but not least, we develop an interactive user interface which demonstrates the performance of different state-of-the-art instance segmentation methods on the task of camouflaged instance segmentation. The users are able to compare the results of different methods on the given input images. Our work is expected to push the envelope of the camouflage analysis problem.
Databáze: OpenAIRE