Exponential decay of Bénard convection problem with surface tension
Autor: | Boling Guo, Binqiang Xie, Lan Zeng |
---|---|
Rok vydání: | 2019 |
Předmět: |
Convection
Applied Mathematics 010102 general mathematics Mathematical analysis 01 natural sciences Physics::Fluid Dynamics 010101 applied mathematics Surface tension Bounded function Free surface A priori and a posteriori 0101 mathematics Boussinesq approximation (water waves) Exponential decay Analysis Mathematics |
Zdroj: | Journal of Differential Equations. 267:2261-2283 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2019.03.017 |
Popis: | We consider the dynamics of an Boussinesq approximation Benard convection fluid evolving in a three-dimensional domain bounded below by a fixed flatten boundary and above by a free moving surface. The domain is horizontally periodic and the effect of the surface tension is on the free surface. By developing a priori estimates for the model, we prove the exponential decay of solutions in the framework of high regularity. |
Databáze: | OpenAIRE |
Externí odkaz: |