Band alignment of Zr2CO2/MoS2 heterostructures under an electric field

Autor: Chuyun Huang, Xinguo Ma, Mei Wang, Shuiquan Deng, Fengda Wan, Jisong Hu, Peng Xu, Zhangze Chen, Guoyu Wang
Rok vydání: 2021
Předmět:
Zdroj: New Journal of Chemistry. 45:16520-16528
ISSN: 1369-9261
1144-0546
DOI: 10.1039/d1nj02440j
Popis: Improving the sensitivity of MoS2-based photodetectors by constructing semiconductor heterostructures remains a challenge. To address this issue, the effects of interlayer spacing and vertical external electric fields on the interfacial interactions and electronic properties of Zr2CO2/MoS2 heterostructures were investigated systematically by first-principles calculations. The results indicate that a stable interface with van der Waals interactions can form between Zr2CO2 and MoS2, which complies with the type-II mechanism. By applying a vertical external electric field to the Zr2CO2/MoS2 heterostructure or changing the interlayer spacing between the Zr2CO2 and MoS2 monolayers, both the band gap and heterostructure type at the Zr2CO2/MoS2 interface can be modulated efficiently. It is remarkable that the band alignment of the Zr2CO2/MoS2 heterostructure is more sensitive to the external electric field than to the interlayer spacing. When the electric field is from −0.5 to 0.5 V A−1, the energy band of the Zr2CO2/MoS2 heterostructure changes from 0.2 to 0.3 eV with a 0.1 V A−1 increase of electric field. The redistribution of charge density with the external electric field and interlayer coupling is revealed to account for the tunable energy bands. Therefore, the Zr2CO2/MoS2 heterostructures with van der Waals interactions possess great potential to be used in high-performance photodetectors.
Databáze: OpenAIRE