Numerical analysis of electric bus fast charging strategies for demand charge reduction
Autor: | R. Paul Brooker, Ali T-Raissi, Azwirman Gusrialdi, Nan Qin |
---|---|
Rok vydání: | 2016 |
Předmět: |
Trickle charging
050210 logistics & transportation Engineering Electric bus business.industry Fast charging 020209 energy Numerical analysis 05 social sciences Electrical engineering ComputerApplications_COMPUTERSINOTHERSYSTEMS Transportation Charge (physics) 02 engineering and technology Management Science and Operations Research Automotive engineering Reduction (complexity) Diesel fuel Hardware_GENERAL 0502 economics and business 0202 electrical engineering electronic engineering information engineering business Civil and Structural Engineering Market penetration |
Zdroj: | Transportation Research Part A: Policy and Practice. 94:386-396 |
ISSN: | 0965-8564 |
DOI: | 10.1016/j.tra.2016.09.014 |
Popis: | Electric transit buses have been recognized as an important alternative to diesel buses with many environmental benefits. Electric buses employing lithium titanate batteries can provide uninterrupted transit service thanks to their ability of fast charging. However, fast charging may result in high demand charges which will increase the fuel costs thereby limiting the electric bus market penetration. In this paper, we simulated daily charging patterns and demand charges of a fleet of electric buses in Tallahassee, Florida and identified an optimal charging strategy to minimize demand charges. It was found that by using a charging threshold of 60–64%, a $160,848 total saving in electricity cost can be achieved for a five electric bus fleet, comparing to a charging threshold of 0–28%. In addition, the impact of fleet sizes on the fuel cost was investigated. Fleets of 4 and 12 buses will achieve the lowest cost per mile driven when one fast charger is installed. |
Databáze: | OpenAIRE |
Externí odkaz: |