Aggregates Characterization and Its Associated Organic Carbon in Two Contrasting Lowland Rice Soils of West Bengal

Autor: Arnab Kundu, Subham Mukherjee, Deep Mukherjee, P. K. Bandyopadhyay, Ramprosad Nandi, Priyanka Ghatak
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Environment and Climate Change. :14-23
ISSN: 2581-8627
DOI: 10.9734/ijecc/2020/v10i430191
Popis: Aims: The present study investigated the effect of lowland rice soils of two regions viz. new alluvial and red-laterite on aggregate characterization and their associated organic carbon (SOC). Study Design: Randomized block design (RBD). Place and Duration of Study: New alluvial soils were collected from Jangipara block of Hooghly, West Bengal and Red-laterite soils were collected from Raghunathpur block of Purulia, West Bengal during 2017-18. Methodology: For each soil types (New alluvial and Red-laterite) five locations were identified and soil samples were collected from three depths i.e. 0-10, 10-20 and 20-30 cm. The aggregate characteristics i.e. water-stable aggregates (WSAs), mean weight diameter (MWD), aggregate stability and aggregate size fractions along with the distribution of carbon in those aggregate size fractions were critically studied. Results: The aggregate size as well as the stability decreased with increasing soil depth from 0 to 30 cm in both soils. New alluvial soils showed higher aggregate stability than red-laterite soils. Mean weight diameter (MWD) values of new alluvial soils were 34, 29 and 87% more than red-laterite soils at 0-10, 10-20 and 20-30 cm depth, respectively. Presence of higher amount of clay and organic matter in new alluvial made the difference in structural coefficient. The surface soil (0-10 cm) had more coarse aggregate (Cmac A >2000μ) fraction, however, microaggregates (2000μ) retained maximum amount of soil organic carbon in both soils however, coarse micro aggregate associated carbon (Cmic AC
Databáze: OpenAIRE