Fuzzy Logic and Neuro-fuzzy Modelling of Diesel Spray Penetration
Autor: | Cyril Crua, Bob R. J. Howlett, Simon Walters, Shaun H. Lee |
---|---|
Rok vydání: | 2005 |
Předmět: |
Adaptive neuro fuzzy inference system
Neuro-fuzzy Artificial neural network business.industry Computer science Control engineering Fuzzy control system Machine learning computer.software_genre Fuzzy logic Diesel fuel Internal combustion engine Artificial intelligence business computer Membership function Test data |
Zdroj: | Lecture Notes in Computer Science ISBN: 9783540288954 KES (2) |
DOI: | 10.1007/11552451_88 |
Popis: | This paper describes a comparative evaluation of two fuzzy-derived techniques for modelling fuel spray penetration in the cylinders of a diesel internal combustion engine. The first model is implemented using conventional fuzzy-based paradigm, where human expertise and operator knowledge were used to select the parameters for the system. The second model used an adaptive neuro-fuzzy inference system (ANFIS), where automatic adjustment of the system parameters is effected by a neural networks based on prior knowledge. Two engine operating parameters were used as inputs to the model, namely in-cylinder pressure and air density. Spray penetration length was modelled on the basis of these two inputs. The models derived using the two techniques were validated using test data that had not been used during training. The ANFIS model was shown to achieve an improved accuracy compared to a pure fuzzy model, based on conveniently selected parameters. |
Databáze: | OpenAIRE |
Externí odkaz: |