Carboxylated Cellulose Nanocrystals Developed by Cu-Assisted H2O2 Oxidation as Green Nanocarriers for Efficient Lysozyme Immobilization
Autor: | Theo G. M. van de Ven, Roya Koshani |
---|---|
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Bioconjugation 010401 analytical chemistry Langmuir adsorption model General Chemistry 01 natural sciences 0104 chemical sciences chemistry.chemical_compound symbols.namesake Adsorption chemistry Chemical engineering Covalent bond Specific surface area Monolayer Magic angle spinning symbols Lysozyme General Agricultural and Biological Sciences 010606 plant biology & botany |
Zdroj: | Journal of Agricultural and Food Chemistry. 68:5938-5950 |
ISSN: | 1520-5118 0021-8561 |
Popis: | Cellulose nanocrystals (CNCs), having a high specific surface area and versatile surface chemistry, provide considerable potential to interact by various mechanisms with enzymes for nano-immobilization purposes. However, engineering chemically safe CNCs, suitable for edible administrations, presents a significant challenge. A reliable carboxylate form of H-CNCs was formed using H2O2 oxidation of softwood pulp under mild thermal conditions. Negatively charged carboxyl groups (∼0.9 mmol g-1) played a key role in lysozyme immobilization via electrostatic interactions and covalent linkages, as evidenced by Fourier transform infrared and 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopies. Adsorption isotherms showed a high loading capacity of H-CNCs (∼240 mg g-1), and fitting the data to the Langmuir model confirmed monolayer coverage of lysozyme on their surface. Using a non-toxic coupling agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, lysozyme-conjugated H-CNCs were developed with an immobilization yield of ∼65% and relative catalytic activity of ∼60%, similar to lysozyme adsorption on H-CNCs. These H-CNC-lysozyme nanohybrids, rationally processed via safe and green strategies, are specifically exploitable as catalytically active emulsifiers in food and pharmaceutical sectors. |
Databáze: | OpenAIRE |
Externí odkaz: |