Autor: |
Mitul Dalal, David J. Dewees, Robert Brown, Jorge Penso |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Volume 6B: Materials and Fabrication. |
DOI: |
10.1115/pvp2019-93706 |
Popis: |
Creep is progressive deformation of material over an extended period when exposed to elevated temperature and stresses below the yield strength. Poor Creep ductility and cracking can be a problem above 900 °F (482°C) in the HAZ of low alloy (Cr-Mo) steel. High stress areas, including supports, hangers and fittings are more vulnerable to cracking. Creep cracking has occurred in longitudinal pipe welds with excessive peaking or welds with poor quality. Numerous incidents of cracking in low alloy (Cr-Mo) steel have been reported in the power industry and in refineries with major concern in longitudinal seam welds as well as highly stressed welds in reactors-heaters interconnecting piping. This paper presents the results of an assessment performed on reactors-heaters interconnecting piping in a catalytic reformer unit with a maximum operating temperature of about 950 °F (510 °C) at 250 psig (1.7 MPa) (> 40 years in-service). Comprehensive inspection including visual, dye penetrant testing, thickness measurements and peaking measurements have been performed. Phased Array Ultrasonic Testing (PAUT) was utilized to detect crack-like defects and flaws. Detailed pipe stress analysis and finite element analyses (FEA) were also performed. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|