Popis: |
Background and purpose: Oenanthotoxin (OETX), a polyacetylenic alcohol from plants of the genus Oenanthe, has recently been identified as potent inhibitor of GABA-evoked currents. However, the effects of OETX on the inhibitory postsynaptic currents (IPSCs), as well as the pharmacological mechanism(s) underlying its effects on GABAA receptors, remain unknown. The purpose of this study was to elucidate the mechanism underlying the inhibition of GABAergic currents by OETX. Experimental approach: Effects of OETX on GABAergic currents were studied using the patch clamp technique on rat cultured hippocampal neurons. Miniature IPSCs (mIPSCs) were recorded in the whole-cell configuration, while the current responses were elicited by ultrafast GABA applications onto the excised patches. Key results: OETX potently inhibited both mIPSCs and current responses, but its effect was much stronger on synaptic currents. Analysis of the effects of OETX on mIPSCs and evoked currents disclosed a complex mechanism: allosteric modulation of both GABAA receptor binding and gating properties and a non-competitive, probably open channel block mechanism. In particular, OETX reduced the binding rate and nearly abolished receptor desensitization. A combination of rapid clearance of synaptic GABA and OETX-induced slowing of binding kinetics is proposed to underlie the potent action of OETX on mIPSCs. Conclusions and implications: OETX shows a complex blocking mechanism of GABAA receptors, and the impact of this toxin is more potent on mIPSCs than on currents evoked by exogenous GABA. Such effects on GABAergic currents are compatible with the convulsions and epileptic-like activity reported for OETX. |