A model with Suslin trees but no minimal uncountable linear orders other than ω1 and −ω1

Autor: Dániel T. Soukup
Rok vydání: 2019
Předmět:
Zdroj: Israel Journal of Mathematics. 233:199-224
ISSN: 1565-8511
0021-2172
DOI: 10.1007/s11856-019-1899-x
Popis: We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than ω1 and −ω1, answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder system uniformization on trees, all while preserving a rigid Suslin tree.
Databáze: OpenAIRE