A model with Suslin trees but no minimal uncountable linear orders other than ω1 and −ω1
Autor: | Dániel T. Soukup |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Israel Journal of Mathematics. 233:199-224 |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-019-1899-x |
Popis: | We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than ω1 and −ω1, answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder system uniformization on trees, all while preserving a rigid Suslin tree. |
Databáze: | OpenAIRE |
Externí odkaz: |