On the Dirichlet problem associated with the Dunkl Laplacian
Autor: | Mohamed Ben Chrouda |
---|---|
Rok vydání: | 2016 |
Předmět: |
Dirichlet problem
Pure mathematics Continuous function General Mathematics 010102 general mathematics Mathematical analysis Function (mathematics) 01 natural sciences Domain (mathematical analysis) 010104 statistics & probability Bounded function 0101 mathematics Laplace operator Complement (set theory) Mathematics Dunkl operator |
Zdroj: | Annales Polonici Mathematici. :1-9 |
ISSN: | 1730-6272 0066-2216 |
DOI: | 10.4064/ap3751-12-2015 |
Popis: | This paper is devoted to the study of the Dirichlet problem associated with the Dunkl Laplaciank. We establish, under some condition on a bounded domain D of R d , the existence of a unique continuous function h on R d such thatkh = 0 on D and h = f on R d \ D the complement of D in R d , where the function f is asumed to be continuous. We also give an analytic formula characterizing the solution h. |
Databáze: | OpenAIRE |
Externí odkaz: |