Multi-Disciplinary Analyses for the Design of a High Pressure Turbine Blade Tip

Autor: Shahrokh Shahpar, Stefano Caloni
Rok vydání: 2016
Předmět:
Zdroj: Volume 5A: Heat Transfer.
DOI: 10.1115/gt2016-57794
Popis: The design of a high pressure turbine blade is a challenging task requiring multiple disciplines to be solved simultaneously. Most recently, conjugate analyses are being developed to tackle such a problem; they are able to resolve both the fluid dynamics in a turbine passage and the thermal distribution in the solid part of the component. In this paper, the in-house Hydra CFD solver is used to analyse a high pressure shroudless turbine blade for a modern jet engine. The turbine is internally cooled and a Thermal Barrier Coating (TBC) is applied on the aerofoil surface. The coupling technique used at the interface in the presence of the TBC is described. The flow features at the tip of the turbine blade are the main focus of this study. Four different tip configurations are analysed. A flat tip and a squealer tip are chosen as reference designs; however the effects of opening the Trailing Edge (TE) on the Suction Side (SS) and the Pressure Side (PS) are also investigated. Both a cooled and an uncooled configuration of the turbine blade are analysed and the effect of the cooling flow on the over tip leakage is studied. Finally, conjugate analyses for the cooled turbine blades are used to predict the temperature reached by the different tip designs. The design with an opened TE on the SS shows a significant aerodynamic improvement over the others without increasing the temperature the tip has to withstand in operation.
Databáze: OpenAIRE