Cephalometric Landmark Regression with Convolutional Neural Networks on 3D Computed Tomography Data
Autor: | Dmitrii Lachinov, Alexandra Getmanskaya, Vadim Turlapov |
---|---|
Rok vydání: | 2020 |
Předmět: |
Cephalometric analysis
Landmark Computer science business.industry Pattern recognition Regression analysis 02 engineering and technology 01 natural sciences Computer Graphics and Computer-Aided Design Convolutional neural network Regression 010309 optics 0103 physical sciences Pattern recognition (psychology) 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Computer Vision and Pattern Recognition Artificial intelligence Invariant (mathematics) business Projection (set theory) |
Zdroj: | Pattern Recognition and Image Analysis. 30:512-522 |
ISSN: | 1555-6212 1054-6618 |
Popis: | In this paper, we address the problem of automatic three-dimensional cephalometric analysis. Cephalometric analysis performed on lateral radiographs doesn’t fully exploit the structure of 3D objects due to projection onto the lateral plane. With the development of three-dimensional imaging techniques such as CT, several analysis methods have been proposed that extend to the 3D case. The analysis based on these methods is invariant to rotations and translations and can describe difficult skull deformation, where 2D cephalometry has no use. In this paper, we provide a wide overview of existing approaches for cephalometric landmark regression. Moreover, we perform a series of experiments with state of the art 3D convolutional neural network (CNN) based methods for keypoint regression: direct regression with CNN, heatmap regression and Softargmax regression. For the first time, we extensively evaluate the described methods and demonstrate their effectiveness in the estimation of Frankfort Horizontal and cephalometric points locations for patients with severe skull deformations. We demonstrate that Heatmap and Softargmax regression models provide sufficient regression error for medical applications (less than 4 mm). Moreover, the Softargmax model achieves 1.15° inclination error for the Frankfort horizontal. For the fair comparison with the prior art, we also report results projected on the lateral plane. |
Databáze: | OpenAIRE |
Externí odkaz: |