New Approximation Algorithms for Touring Regions

Autor: Qi, Benjamin, Qi, Richard
Jazyk: angličtina
Rok vydání: 2023
Předmět:
DOI: 10.4230/lipics.socg.2023.54
Popis: We analyze the touring regions problem: find a (1+ε)-approximate Euclidean shortest path in d-dimensional space that starts at a given starting point, ends at a given ending point, and visits given regions R₁, R₂, R₃, … , R_n in that order. Our main result is an O (n/√ε log{1/ε} + 1/ε)-time algorithm for touring disjoint disks. We also give an O(min(n/ε, n²/√ε))-time algorithm for touring disjoint two-dimensional convex fat bodies. Both of these results naturally generalize to larger dimensions; we obtain O(n/{ε^{d-1}} log²1/ε + 1/ε^{2d-2}) and O(n/ε^{2d-2})-time algorithms for touring disjoint d-dimensional balls and convex fat bodies, respectively.
LIPIcs, Vol. 258, 39th International Symposium on Computational Geometry (SoCG 2023), pages 54:1-54:16
Databáze: OpenAIRE