Study of the stability of a 3×3 system of difference equations using Centre Manifold Theory

Autor: Nikolaos Psarros, C. J. Schinas, Garyfalos Papaschinopoulos
Rok vydání: 2017
Předmět:
Zdroj: Applied Mathematics Letters. 64:185-192
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.09.002
Popis: We study the stability of the zero equilibrium of the following system of difference equations, which is a natural extension of an one-dimensional biologicalmodel: x n + 1 = a 1 x n + b 1 y n e − x n , y n + 1 = a 2 y n + b 2 z n e − y n , z n + 1 = a 3 z n + b 3 x n e − z n where a 1 , a 2 , a 3 , b 1 , b 2 , b 3 are real constants and the initial values conditions x 0 , y 0 and z 0 are real numbers. The stability of those systems in the special case when one of the eigenvalues has absolute value equal to 1 and the other two eigenvalues have absolute value less than 1, using centre manifold theory, is investigated.
Databáze: OpenAIRE