A Note on the Maximum Number of Zeros of $$r(z) - \overline{z}$$ r ( z ) - z ¯
Autor: | Olivier Sète, Jörg Liesen, Robert Luce |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Computational Methods and Function Theory. 15:439-448 |
ISSN: | 2195-3724 1617-9447 |
DOI: | 10.1007/s40315-015-0110-6 |
Popis: | An important theorem of Khavinson and Neumann (Proc. Am. Math. Soc. 134: 1077–1085, 2006) states that the complex harmonic function \(r(z) - \overline{z}\), where \(r\) is a rational function of degree \(n \ge 2\), has at most \(5 (n - 1)\) zeros. In this note, we resolve a slight inaccuracy in their proof and in addition we show that for certain functions of the form \(r(z) - \overline{z}\) no more than \(5 (n - 1) - 1\) zeros can occur. Moreover, we show that \(r(z) - \overline{z}\) is regular, if it has the maximal number of zeros. |
Databáze: | OpenAIRE |
Externí odkaz: |